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Abstract

In the last fifteen years variational methods have been widely applied in the study of geodesic
connectedness of stationary spacetimes. In this paper we introduce fine estimates which allow us to
apply such methods to this problem in an optimal way, improving by far previous results on the subject.
Our estimates also seem useful for extending the existing results in other related subjects, for example,
connectedness by timelike geodesics and existence of normal trajectories.
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1. Introduction

A Lorentzian manifold is called stationary if it admits a timelike Killing vector field. An
important sub-class is characterized by the following simpler structure:

Definition 1.1. A Lorentzian manifold (M, 〈·, ·〉L) given by a global splittingM =M0 × R is
(standard) stationary if (M0, 〈·, ·〉) is a finite dimensional connected Riemannian manifold and
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the metric is

〈ζ, ζ ′
〉L = 〈ξ, ξ ′

〉 + 〈δ(x), ξ〉τ ′
+ 〈δ(x), ξ ′

〉τ − β(x)ττ ′ (1.1)

for any z = (x, t) ∈M and ζ = (ξ, τ ), ζ ′
= (ξ ′, τ ′) ∈ TzM = TxM0 × R, where δ and β are

respectively a smooth vector field and a smooth strictly positive scalar field onM0.
In the particular case of δ ≡ 0 the Lorentzian manifold is called (standard) static.

Stationary spacetimes play an important role in General Relativity, since they represent
time-independent gravitational fields which may arise as final states of multiple astrophysical
processes (collapsing stars,. . . ). The most well-known example of purely stationary spacetime is
the classical Kerr spacetime, which essentially represents the gravitational field outside a rotating
star (more details and examples can be found in [4,11,14]).

Recall that by a geodesic z in a Lorentzian (semi-Riemannian) manifold (M, 〈·, ·〉L) we mean
a smooth curve z : I →M (I a real interval) such that

Ds ż(s) = 0 for all s ∈ I,

where Ds denotes the covariant derivative along z induced by the Levi-Civita connection of
metric 〈·, ·〉L . It is well known that, if z is a geodesic, then

Ez ≡ 〈ż(s), ż(s)〉L for all s ∈ I

is a constant. Thus, in a Lorentzian manifold geodesics can be classified according to the sign of
Ez (causal character): a geodesic z is said to be timelike (resp. lightlike; causal; spacelike) if Ez
is negative (resp. null; non-positive; positive).

Apart from their purely geometric interest, geodesics are very relevant in General Relativity,
since causal ones represent trajectories of particles or light rays under the action of the
gravitational field. Therefore, the study of their properties is of interest from both the
mathematical and the physical viewpoint.

In the last few years, there has been intensive research devoted to the study of different prop-
erties of geodesics in stationary spacetimes, such as geodesic connectedness and completeness,
existence of periodic trajectories, multiplicity and causal character of connecting geodesics. Re-
markably, in the static case some of these properties present a “critical” behavior with respect
to a quadratic asymptotic growth of metric coefficient β1 (a nice survey on this subject can be
found in [16]). In fact, in [3] the authors studied the geodesic connectedness of static spacetimes,
that is, they asked whether any two points of the spacetime can be connected by a geodesic. They
answered positively to this question whenever coefficient β grows (at most) quadratically [3,
Theorem 1.1]. Moreover, this growth is optimal/critical, in the sense that static counterexamples
are found with superquadratic β presenting a growth as close as we want to the quadratic one [3,
Section 7]. Even more relevant, this analysis is totally fulfilled by using variational techniques,
showing that the variational approach is specially well-adapted to this problem.

Taking into account these considerations, the following questions arise in a natural way: Does
geodesic connectedness also present a critical behavior in the more general class of stationary
spacetimes? Can variational methods provide this extended optimal result on their own?

In [15, Corollary 3.4] Sánchez proved global hyperbolicity of stationary spacetimes by
assuming a quadratic growth for coefficient β and a linear one for δ; conditions which are also

1 In the particular case of geodesic completeness, the critical behavior is with respect to a quadratic asymptotic growth
of the reciprocal β−1.
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optimal. Taking into account that global hyperbolicity implies causal geodesic connectedness
between causally related points, this result suggests an affirmative answer to the first question,
providing also the right growths to impose on β and δ. The aim of this paper is to exploit
variational tools by using fine estimates in order to ensure that these conditions on β and δ are
indeed sufficient for geodesic connectedness. In addition, we will prove that our result essentially
exhausts the variational technique, suggesting its optimal/critical character.

The history of the problem of geodesic connectedness in stationary spacetimes is long. The
first result on the subject appeared in [9, Theorem 1.10] (see also [12, Theorem 3.4.3]). There,
Giannoni and Masiello proved geodesic connectedness when β is far away from 0 and bounded
from above, i.e., ν, k1 > 0 exist such that

ν ≤ β(x) ≤ k1 for all x ∈M0, (1.2)

and δ is bounded, i.e., supx∈M0
〈δ(x), δ(x)〉 < +∞. In a subsequent paper Pisani relaxed

previous hypotheses by only assuming a sublinear growth for β and δ, i.e., there exist ν > 0,
µ1, µ2 ≥ 0, k1, k2 ∈ R, q1, q2 ∈ [0, 1[ and a point x̄ ∈M0 such that

ν ≤ β(x) ≤ µ1dq1(x, x̄) + k1 for all x ∈M0

and √
〈δ(x), δ(x)〉 ≤ µ2dq2(x, x̄) + k2 for all x ∈M0 (1.3)

where d(·, ·) is the distance induced onM0 by its Riemannian metric 〈·, ·〉 (see [13, Theorem
1.2]). Several years later, in [10] Giannoni and Piccione also studied the problem in general
(not necessarily standard) stationary Lorentzian manifolds. In particular, when restricted to the
standard case, their result provides geodesic connectedness when β satisfies (1.2) and δ grows
as in (1.3) (see [10, Appendix A]). Finally, under the same hypotheses of [13], in [8] the authors
provided existence and also multiplicity results for geodesics connecting two submanifolds (in
particular, two points) in a stationary spacetime.

In this paper we improve by far the hypotheses needed to ensure geodesic connectedness
for a stationary spacetime: for the positive coefficient β only a quadratic asymptotic growth is
needed while any other lower bound is ruled out (in fact, in all the above cited papers the lower
bound in (1.2) was required unlike in the static case); additionally, for δ we assume a linear
growth. As in most of the papers on the topic, we will apply variational methods. However,
original accurate estimates are introduced here. As a consequence, our approach exhausts the
variational technique, suggesting that our result is optimal/critical (see Example 2.7 and its
previous discussion).

Our main theorem can be stated as follows.

Theorem 1.2. Let M = M0 × R be a (standard) stationary Lorentzian manifold as in
Definition 1.1. Suppose that

(H1) Riemannian manifold (M0, 〈·, ·〉) is complete and smooth (at least C3);
(H2) there exist λ, µ ≥ 0, k1, k2 ∈ R and a point x̄ ∈M0 such that

β(x) ≤ λd2(x, x̄) + k1 for all x ∈M0, (1.4)√
〈δ(x), δ(x)〉 ≤ µd(x, x̄) + k2 for all x ∈M0. (1.5)

Then,M is geodesically connected.
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Remark 1.3. If, in addition to the assumptions of Theorem 1.2,M0 is non-contractible in itself,
then Ljusternik–Schnirelman Theory directly implies that any two points inM are joined by a
sequence (zk)k of spacelike geodesics such that Ezk ≡ 〈żk, żk〉L → +∞ (see, e.g., [3, Theorem
1.1]).

We finish this section by highlighting that the arguments firstly introduced in this paper can
be also applied to other related questions. For example, the same ideas provide existence and
multiplicity results for timelike geodesics connecting two points (see [1]),2 and existence of
connecting trajectories under the action of an external field in a stationary spacetime (see [2]).

2. Proof of Theorem 1.2

LetM be a (standard) stationary Lorentzian manifold and fix z0 = (x0, t0), z1 = (x1, t1) in
M. In what follows, we can choose I = [0, 1] since the set of geodesics in a semi-Riemannian
manifold is invariant by affine reparametrizations. Obviously, without restriction, in assumption
(H2) we can take x̄ = x0 and replace (1.4) with

β(x) ≤ λd2(x, x0) + 1 for all x ∈M0 (2.1)

and (1.5) with√
〈δ(x), δ(x)〉 ≤

√
λd(x, x0) + 1 for all x ∈M0. (2.2)

By the product structure ofM, the infinite dimensional manifold H1(I,M) (first Sobolev
space of curves onM) is diffeomorphic to the product manifold H1(I,M0)× H1(I, R) and can
be equipped with the structure of a Riemannian manifold by setting

〈ζ, ζ 〉1 =

∫ 1

0
〈ξ, ξ〉ds +

∫ 1

0
〈Dsξ, Dsξ〉ds +

∫ 1

0
τ 2ds +

∫ 1

0
τ̇ 2ds,

for any z = (x, t) ∈ H1(I,M) and ζ = (ξ, τ ) ∈ Tz H1(I,M) ≡ Tx H1(I,M0) × H1(I, R)

(here, Ds denotes the covariant derivative along x induced by the Levi-Civita connection of
metric 〈·, ·〉).

By the Nash Embedding Theorem, asM0 is at least C3 we can assume that it is a submanifold
of the Euclidean space RN , 〈·, ·〉 is the restriction toM0 of the Euclidean metric on RN and d(·, ·)

is the corresponding distance, i.e.,

d(x̄1, x̄2) = inf
{∫ b

a
|γ̇ |ds : γ ∈ Ax̄1,x̄2

}
= inf

{
length(γ ) : γ ∈ Ax̄1,x̄2

}
where x̄1, x̄2 ∈M0, |γ̇ (s)| =

√
〈γ̇ (s), γ̇ (s)〉 and γ ∈ Ax̄1,x̄2 if γ : [a, b] →M0 is a piecewise

smooth curve joining x̄1 to x̄2.
Hence, it can be proved that H1(I,M0) can be identified with the set of absolutely continuous

curves x : I → RN with square summable derivative such that x(I ) ⊂ M0. Furthermore,
as (M0, 〈·, ·〉) is a complete Riemannian manifold, H1(I,M) is also a complete Riemannian
manifold with respect to 〈·, ·〉1.

2 Although in this paper the main result [1, Theorem 1.3] was stated by assuming a strictly positive lower bound for β

and a sublinear growth for δ, the argument given there actually proves the result just under the same hypotheses as those
of Theorem 1.2 here.
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Let Z be the smooth manifold of all H1(I,M)-curves joining z0 to z1 and let Ω1(x0, x1)

denote the smooth submanifold of H1(I,M0) formed by all H1(I,M0)-curves joining x0 to x1
inM0. Since H1(I,M) is diffeomorphic to a product manifold it follows that

Z ≡ Ω1(x0, x1) × W (t0, t1),

where

W (t0, t1) = {t ∈ H1(I, R) : t (0) = t0, t (1) = t1} = H1
0 + T ∗

with

H1
0 = {t ∈ H1(I, R) : t (0) = 0 = t (1)}

and

T ∗
: s ∈ I 7→ t0 + s∆t ∈ R, ∆t = t1 − t0.

Hence, W (t0, t1) is a closed affine submanifold of H1(I, R) with tangent space Tt W = H1
0 for

all t ∈ W (t0, t1). Moreover, for all x ∈ Ω1(x0, x1) we have

TxΩ1(x0, x1) = {ξ ∈ Tx H1(I,M0) : ξ(0) = 0 = ξ(1)}.

Thus, taking any curve z = (x, t) ∈ Z we have

Tz Z ≡ TxΩ1(x0, x1) × H1
0 ,

and Z can be equipped with the following equivalent Riemannian structure:

〈ζ, ζ 〉H = 〈(ξ, τ ), (ξ, τ )〉H =

∫ 1

0
〈Dsξ, Dsξ〉ds +

∫ 1

0
τ̇ 2ds

for any z = (x, t) ∈ Z and ζ = (ξ, τ ) ∈ Tz Z .
According to Definition 1.1 action functional f : Z → R is defined as

f (z) =

∫ 1

0
〈ż, ż〉Lds =

∫ 1

0

(
〈ẋ, ẋ〉 + 2〈δ(x), ẋ〉ṫ − β(x)ṫ2

)
ds

for any z = (x, t) ∈ Z . It is easy to prove that f is C1 in Z with

f ′(z)[(ξ, τ )] = 2
∫ 1

0
〈ẋ, ξ̇〉ds

+ 2
∫ 1

0
(〈δ′(x)[ξ ], ẋ〉ṫ + 〈δ(x), ξ̇〉ṫ + 〈δ(x), ẋ〉τ̇ )ds

−

∫ 1

0

(
β ′(x)[ξ ]ṫ2

+ 2β(x)ṫ τ̇
)

ds

for any z = (x, t) ∈ Z , (ξ, τ ) ∈ Tz Z .
Standard “bootstrap” arguments show that z∗

= z∗(s) is a geodesic joining the two fixed
points z0 and z1 inM (i.e., z0 and z1 are geodesically connected) if and only if z∗ is a critical
point of action functional f in Z .

But, unlike the Riemannian energy functional, the Lorentzian one f is unbounded both from
above and from below and its critical points have infinite Morse index. Thus, in general, the



2030 R. Bartolo et al. / Journal of Geometry and Physics 56 (2006) 2025–2038

existence of its critical levels cannot be directly investigated by means of classical topological
methods.

Nevertheless, as the coefficients of the metric defined in (1.1) do not depend on the time
variable t , the search for geodesics joining z0 to z1 can be reduced to the search for critical
points of a functional depending only on the spatial component x (see the pioneer paper [6]).

To this end, let us consider functional J : Ω1(x0, x1) → R defined as

J (x) =

∫ 1

0
〈ẋ, ẋ〉ds +

∫ 1

0

〈δ(x), ẋ〉
2

β(x)
ds − K 2

t (x)

∫ 1

0

1
β(x)

ds, (2.3)

where

Kt (x) =

(
∆t −

∫ 1

0

〈δ(x), ẋ〉

β(x)
ds

)(∫ 1

0

1
β(x)

ds

)−1

. (2.4)

The following variational principle can be stated (for more details, see [9, Theorem 2.2] or
also [12, Theorem 3.3.2]).

Proposition 2.1. Let z∗
= (x∗, t∗) ∈ Z. The following statements are equivalent:

(i) z∗ is a critical point of action functional f in Z;
(ii) x∗ is a critical point of functional J : Ω1(x0, x1) → R defined in (2.3) and t∗ = Ψ(x∗),

with Ψ : Ω1(x0, x1) → W (t0, t1) such that

Ψ(x)(s) = t0 +

∫ s

0

〈δ(x(σ )), ẋ(σ )〉

β(x(σ ))
dσ + Kt (x)

∫ s

0

1
β(x(σ ))

dσ

and Kt (x) defined as in (2.4).

Moreover, if (i), or equivalently (ii), holds then f (z∗) = J (x∗).

Remark 2.2. From the proof of Proposition 2.1 as developed in [12, Section 3.3], it follows that
taking any x ∈ Ω1(x0, x1) we have

f ′(x,Ψ(x))[(ξ, τ )] = J ′(x)[ξ ] for all ξ ∈ TxΩ1(x0, x1), τ ∈ H1
0 .

To prove the geodesic connectedness ofM we shall apply the following classical theorem to
functional J on the Riemannian manifold Ω1(x0, x1).

Theorem 2.3. Let Ω be a complete Riemannian manifold and J a C1 functional on Ω bounded
from below which satisfies the Palais–Smale condition, i.e., any (xk)k ⊂ Ω such that

(J (xk))k is bounded and lim
k→+∞

J ′(xk) = 0

converges in Ω , up to subsequences. Then, J has a minimum point.

In order to ensure that the hypotheses of Theorem 2.3 hold under assumptions (2.1) and (2.2),
previously we need some accurate estimates. They are included in the following three technical
lemmas.

Lemma 2.4. Let β satisfy (2.1). If (xk)k ⊂ Ω1(x0, x1) satisfies ‖ẋk‖ → +∞ then∫ 1

0

‖ẋk‖
2

β(xk)
ds → +∞ as k → +∞, (2.5)

where ‖ẋk‖
2

=
∫ 1

0 〈ẋk, ẋk〉ds.
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Proof. The key arguments for deducing (2.5) are implicitly contained in the proof of [3,
Proposition 4.1]. Nevertheless, for the sake of completeness, here we point out the main ideas.

Firstly, let us remark that the proof of (2.5) can be reduced to solving a 1-dimensional problem.
Indeed, as in [7, Lemma 3.4], for any x ∈ Ω1(x0, x1) we can define a new function y : I → R
such that

y(s) =


∫ s

0
|ẋ(σ )|dσ if s ∈ [0, s0]

d(x0, x1) +

∫ 1

s
|ẋ(σ )|dσ if s ∈ ]s0, 1]

for a suitable s0 ∈ I such that y is continuous. As a consequence, we have

y ∈ W (0, d(x0, x1)) = {y ∈ H1(I, R) : y(0) = 0, y(1) = d(x0, x1)}.

By definition, it is∫ 1

0
|ẏ|

2ds = ‖ẋ‖
2 and d(x(s), x0) ≤ y(s) for all s ∈ I. (2.6)

Now, from (2.1) and (2.6), our task is reduced to proving that taking any (yk)k in
W (0, d(x0, x1)) such that

αk :=

∫ 1

0
|ẏk |

2ds → +∞ if k → +∞ (2.7)

then ∫ 1

0

αk

λy2
k + 1

ds → +∞ if k → +∞. (2.8)

Arguing by contradiction, if (2.8) does not hold then(∫ 1

0

αk

λy2
k + 1

ds

)
k

has to be bounded (2.9)

(up to take a subsequence). Without loss of generality, by (2.7) we can assume αk > 0 and the
existence of a sequence (sk)k ⊂ I such that

yk(sk) → +∞ if k → +∞ (2.10)

(otherwise (‖yk‖∞)k has a bounded subsequence for which (2.8) holds in contradiction with
(2.9)).

For simplicity, for all k ∈ N define the new functions

hk(s) =
|ẏk(s)|
√

αk
and gk(s) =

√
αk

λy2
k (s) + 1

if s ∈ I.

Clearly, the definition of αk implies
∫ 1

0 h2
kds = 1. So, by the Cauchy–Schwarz inequality we

have ∫ 1

0
hk gkds ≤

(∫ 1

0

αk

λy2
k + 1

ds

)1/2

, (2.11)
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where∫ 1

0
hk gkds =

∫ 1

0

|ẏk |√
λy2

k + 1
ds =

1
√

λ

∫ 1

0

∣∣∣∣ d
ds

arcsinh(
√

λ yk)

∣∣∣∣ ds. (2.12)

But, taking into account (2.10) we obtain∫ 1

0

∣∣∣∣ d
ds

arcsinh(
√

λyk)

∣∣∣∣ ds ≥

∣∣∣∣∫ sk

0

d
ds

arcsinh(
√

λyk)ds

∣∣∣∣
= |arcsinh(

√
λyk(sk))| −→ +∞ if k → +∞. (2.13)

Hence, (2.11)–(2.13) give (2.8) in contradiction with (2.9). �

It is well known that when the Cauchy–Schwarz inequality becomes an equality for a function
f , it must be a constant. The next lemma states that, even when the equality does not exactly hold,
a very useful information about f can be deduced.

Lemma 2.5. Let ( fk)k be a sequence of non-negative functions, 0 6≡ fk ∈ L2([0, ak]), and let a
c > 0 exist such that

c +

∫ ak

0
fk(r)dr >

(∫ ak

0
f 2
k (r)dr

)1/2
√

ak for all k ∈ N. (2.14)

Define

mk :=
1
ak

∫ ak

0
fk(r)dr and Dk :=

{
r ∈ [0, ak] : fk(r) ≥

mk

2

}
.

If the measure of Dk , |Dk |, is written as

|Dk | = εkak,

then we obtain

εk > 1 −
8c

mkak
−

4c2

m2
ka2

k

for all k ∈ N.

Proof. Fix k ∈ N. The proof is trivial if εk = 1, i.e., |Dk | = ak . On the other hand, it cannot be
εk = 0. In fact, if this happens then |Dc

k | = ak with

Dc
k := [0, ak] \ Dk =

{
r ∈ [0, ak] : fk(r) <

mk

2

}
.

Hence,

mkak =

∫ ak

0
fk(r)dr =

∫
Dc

k

fk(r)dr <
mkak

2

which is a contradiction.
So, assume 0 < εk < 1 and fix the following notation:

vk :=
1

εkak

∫
Dk

fk(r)dr, wk :=
1

(1 − εk)ak

∫
Dc

k

fk(r)dr.

Clearly, by definition we have

mk = vkεk + wk(1 − εk), 2wk < mk ≤ 2vk; (2.15)
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furthermore, by (2.15) it follows that wk < vk , and replacing this inequality into the equality of
(2.15) we also obtain

mk < vk . (2.16)

On the other hand, the Cauchy–Schwarz inequality implies∫
Dk

f 2
k (r)dr ≥ v2

k εkak and
∫

Dc
k

f 2
k (r)dr ≥ w2

k (1 − εk)ak . (2.17)

Therefore, from (2.14), (2.17) and the equality in (2.15) we have

c >

(∫ ak

0
f 2
k (r)dr

)1/2
√

ak −

∫ ak

0
fk(r)dr

≥ (v2
k εkak + w2

k (1 − εk)ak)
1/2√ak − mk ak

= (m2
ka2

k + εk(1 − εk)a
2
k (vk − wk)

2)1/2
− mkak,

which directly implies

εk(1 − εk)a
2
k (vk − wk)

2 < c2
+ 2cmk ak .

Finally, as vk 6= wk , this last inequality, (2.15) and (2.16) give

1 − εk <
c2

+ 2cmkak

εka2
k (vk − wk)2

=
c2

+ 2cmkak

a2
k (mk − wk)(vk − wk)

<
4(c2

+ 2cmkak)

m2
ka2

k

which concludes the proof. �

Lemma 2.6. If (H2) holds then there cannot exist a sequence (xk)k ⊂ Ω1(x0, x1) satisfying
both

(J (xk))k is bounded from above (2.18)

and

‖ẋk‖ → +∞ as k → +∞, (2.19)

where functional J is defined by (2.3) and (2.4).

Proof. Assume by contradiction the existence of a sequence (xk)k ⊂ Ω1(x0, x1) such that both
(2.18) and (2.19) hold.

Firstly, let us notice that for each x ∈ Ω1(x0, x1) we have

J (x) ≥ ‖ẋ‖
2
+ Σ (x,∆t )

(∫ 1

0

ds

β(x)

)−1

(2.20)

with

Σ (x,∆t ) :=

∫ 1

0

〈δ(x), ẋ〉
2

β(x)
ds
∫ 1

0

ds

β(x)
−

(
|∆t | +

∫ 1

0

|〈δ(x), ẋ〉|

β(x)
ds

)2

.

Hence, by (2.18) and (2.19) it has to be the case that

Σ (xk,∆t ) < 0 for k large enough. (2.21)
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On the other hand, from the Cauchy–Schwarz inequality we have∫ 1

0

〈δ(x), ẋ〉
2

β(x)
ds ≥

(∫ 1

0

|〈δ(x), ẋ〉|

β(x)
ds

)2 (∫ 1

0

ds

β(x)

)−1

, (2.22)

which replaced into (2.20) yields

J (x) ≥ ‖ẋ‖
2
−

(
∆2

t + 2|∆t |

∫ 1

0

|〈δ(x), ẋ〉|

β(x)
ds

)(∫ 1

0

ds

β(x)

)−1

.

Therefore, if we define

J̄ (x) := ‖ẋ‖
2
−

(
∆2

t + 2|∆t |

∫ 1

0

|〈δ(x), ẋ〉|

β(x)
ds

)(∫ 1

0

ds

β(x)

)−1

, (2.23)

necessarily by (2.18) it follows that

( J̄ (xk))k is bounded from above. (2.24)

In order to get a contradiction, first we need to rewrite the expression for J̄ (xk) in a “simpler”
way. By (2.19), we can obviously assume ‖ẋk‖ > 0 for all k ∈ N; so, we can define

θk := ∆2
t

(∫ 1

0

‖ẋk‖
2

β(xk)
ds

)−1

,

Pk :=

(∫ 1

0

|〈δ(xk), ẋk〉|

β(xk)
ds

)(∫ 1

0

‖ẋk‖
2

β(xk)
ds

)−1

.

By (2.19) and Lemma 2.4 we have

lim
k→+∞

θk = 0; (2.25)

therefore, we can also assume 0 ≤ θk < 1 for all k ∈ N and define

κk :=
2|∆t |

1 − θk
,

which clearly satisfies

lim
k→+∞

κk = 2|∆t |. (2.26)

Summarizing, if we replace these definitions into (2.23), we obtain

J̄ (xk) = (1 − θk)(1 − κk Pk)‖ẋk‖
2. (2.27)

Now, write

ak :=

∫ 1

0

ds

β(xk(s))
, mk :=

1
ak

∫ 1

0

|〈δ(xk(s)), ẋk(s)〉|

β(xk(s))
ds, (2.28)

so that

Pk =
mk

‖ẋk‖
2 . (2.29)
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Obviously, if (up to subsequences) we have

lim
k→+∞

Pk = 0, (2.30)

then (2.19), (2.25), (2.26) and (2.27) yield a contradiction to (2.24). Hence, we can assume

lim
k→+∞

mk = +∞, lim
k→+∞

mkak = +∞, (2.31)

(otherwise, either (2.19) or Lemma 2.4 implies (2.30)), and thus, a constant A > 0 exists such
that

‖ẋk‖
2

≤ Amk for all k ∈ N. (2.32)

Define c := |∆t | (which must be strictly positive by (2.21) and (2.22)) and

fk(r) := |〈δ(xk(s(r))),
dxk

ds
(s(r))〉| 6≡ 0 with dr =

ds

β(xk(s))
.

Then, condition (2.21) reduces to inequality (2.14). Therefore, we can apply Lemma 2.5 and
deduce

εk > 1 −
8c

mkak
−

4c2

m2
ka2

k

, (2.33)

where εk is such that

|Dk | = εk ak with Dk :=

{
r ∈ [0, ak] : |〈δ(xk(s(r))),

dxk

ds
(s(r))〉| ≥

mk

2

}
.

Or, equivalently,∫
D̃k

ds

β(xk(s))
= εkak (2.34)

with

D̃k :=

{
s ∈ I : |〈δ(xk(s)), ẋk(s)〉| ≥

mk

2

}
. (2.35)

Therefore, from (2.2) and (2.35) we have on D̃k :

(
√

λ length(xk(s)) + 1)|ẋk(s)| ≥ (
√

λd(xk(s), x0) + 1)|ẋk(s)|

≥ |δ(xk(s))||ẋk(s)| ≥ |〈δ(xk(s)), ẋk(s)〉| ≥
mk

2
, (2.36)

length(xk(s)) being the length of the portion of curve xk([0, s]). In particular, from (2.36) and
(2.32), it follows that

mk

∫
D̃k

ds

(
√

λ length (xk(s)) + 1)2
≤

4
mk

∫
D̃k

|ẋk(s)|
2ds ≤ 4A for all k. (2.37)

But notice that the Cauchy–Schwarz inequality and (2.32) imply

length(xk(s)) ≤

√
Amks for all s ∈ I ;
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whence

mk

∫ 1

0

ds

(
√

λ length(xk(s)) + 1)2
≥ mk

∫ 1

0

ds

(
√

λAmks + 1)2

=
2

λA

(
lg(
√

λAmk + 1) +
1

√
λAmk + 1

− 1
)

,

which goes to infinity by (2.31). Thus, by (2.37) we must have

lim
k→+∞

mk

∫
D̃c

k

ds

(
√

λ length(xk(s)) + 1)2
= +∞, (2.38)

where D̃c
k = I \ D̃k .

On the other hand, (2.28), (2.34) and (2.1) imply

(1 − εk)ak =

∫
D̃c

k

ds

β(xk(s))
≥

dk

mk
(2.39)

with

dk := mk

∫
D̃c

k

ds

(
√

λ length(xk(s)) + 1)2
.

Therefore, from (2.39) and (2.33)we obtain:

dk ≤ (1 − εk)mkak < 8c +
4c2

mkak

in contradiction with (2.38) (recall (2.31)). �

Proof of Theorem 1.2. By Proposition 2.1 and previous related discussion, it is enough to prove
that J has a minimum point. Hence, we just have to check that J satisfies the hypotheses of
Theorem 2.3 in the complete Riemannian manifold Ω1(x0, x1).

To this end, firstly we claim that J must be bounded from below. In fact, if it does not hold,
a sequence (xk)k exists such that J (xk) → −∞. Then, necessarily (2.19) must hold (otherwise,
(‖xk‖∞)k has a bounded subsequence, and thus, (J (xk))k also has), and Lemma 2.6 yields the
contradiction.

Now, in order to prove that J satisfies the Palais–Smale condition, let (xk)k ⊂ Ω1(x0, x1) and
M > 0 be such that

sup
k∈N

J (xk) ≤ M and lim
k→+∞

J ′(xk) = 0. (2.40)

Clearly, Lemma 2.6 and (2.40) imply that (‖ẋk‖)k is bounded; whence, it follows that

sup{d(xk(s), x0) : s ∈ I, k ∈ N} < +∞.

So, not only (xk)k is bounded in H1(I, RN ) but, by Proposition 2.1 and (2.4), also (tk)k is
bounded in H1(I, R) with tk = Ψ(xk). Hence, there exist x ∈ H1(I, RN ), t ∈ H1(I, R) such
that, up to subsequences, it is xk ⇀ x weakly in H1(I, RN ) and tk ⇀ t weakly in H1(I, R)

(and also uniformly in I ). As M0 is complete then x ∈ Ω1(x0, x1) while t ∈ W (t0, t1), so
τk tk − t ∈ H1

0 and by [5, Lemma 2.1] there exist two sequences (ξk)k , (νk)k ⊂ H1(I, RN ) such
that

ξk ∈ Txk Ω
1(x0, x1), xk − x = ξk + νk for all k ∈ N,

ξk ⇀ 0 weakly and νk → 0 strongly in H1(I, RN ).
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By Remark 2.2 we have

f ′(zk)[(ξk, −τk)] = J ′(xk)[ξk] = o(1) with zk = (xk, tk);

hence, reasoning as in the proof of [12, Lemma 3.4.1], we have ξk → 0 strongly in H1(I, RN )

and this implies xk → x strongly in Ω1(x0, x1).
Hence, J has a minimum point. �

Finally, we study the optimal/critical character of the hypotheses in Theorem 1.2. Observe
that the accuracy of the assumption on β is ensured by the family of static spacetimes given
in [3, Section 7]. So, in the following example we focus on hypothesis (1.5). Concretely, we
construct a (non-static) stationary spacetime with coefficient β constantly equal to 1 and vector
field δ superlinear (but as close as we want to linear) such that the corresponding functional
J is unbounded from below on curves with certain fixed extreme points. Whence, we have
shown that Theorem 1.2 essentially exhausts the variational technique for the study of geodesic
connectedness in the (standard) stationary case. In particular, this example is a promising
candidate for being non-geodesically connected.

Example 2.7. Consider the stationary spacetimeM = R2
× R endowed with metric

〈·, ·〉L = 〈·, ·〉 + 2δ(x)dx2dt − dt2

where 〈·, ·〉 = φ(x2)dx2
1 +dx2

2 , x = (x1, x2) are the natural coordinates of plane R2 and functions
φ, respectively δ, satisfy

• φ(x2) decreases as x−2α
2 when x2 → +∞, for a fixed α > 0;

• if x1 ≤ −1 then δ(x1, x2) ≡ δ(x2) with δ(x2) growing as x1+ε
2 when x2 → +∞, and if x1 ≥ 1

then δ(x1, x2) ≡ δ(x2) with δ(x2) decreasing as −x1+ε
2 when x2 → +∞, for a fixed ε > 0.

For simplicity, let us assume that we have exactly δ(x2) = x1+ε
2 (respectively δ(x2) = −x1+ε

2 )
for x2 large enough.

The idea is to choose a suitable sequence of diverging curves (yk)k with fixed extremes such
that 〈δ(yk), ẏk〉 remains essentially constant along the curve. Then, the superlinear character of
δ will imply that J (yk) → −∞.

Thus, consider the sequence of piecewise smooth curves yk : I → R2 defined in the following
way:

yk(s) =



(
1, k

1
2+ε

(
s +

1
k

) 1
2+ε

)
if s ∈

[
0,

1
2

− ρk

[
(

−
1
ρk

(
s −

1
2

)
, k

1
2+ε

(
1
2

− ρk +
1
k

) 1
2+ε

)
if s ∈

[
1
2

− ρk,
1
2

+ ρk

]
,

(−1, (−ks + k + 1)
1

2+ε ) if s ∈

]
1
2

+ ρk, 1
]

,

with ρk = k
−α
2+ε . A direct computation shows∫ 1

0
〈ẏk, ẏk〉ds ≤ C(ε)k,

∫ 1

0
〈δ(yk), ẏk〉

2ds =
1 − 2ρk

(2 + ε)2 k2

∫ 1

0
〈δ(yk), ẏk〉ds = −

1 − 2ρk

2 + ε
k,
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where C(ε) does not depend on k. Summarizing, we can write

J (yk) ≤

∫ 1

0
〈ẏk, ẏk〉 +

∫ 1

0
〈δ(yk), ẏk〉

2

−

(∫ 1

0
〈δ(yk), ẏk〉

)2

+ 2∆t

∫ 1

0
〈δ(yk), ẏk〉

≤

(
C(ε) −

2∆t (1 − 2ρk)

2 + ε

)
k +

2ρk − 4ρ2
k

(2 + ε)2 k2.

Therefore, if we take α > 2(2 + ε) and choose ∆t = t1 − t0 such that

∆t >
(2 + ε)C(ε)

2(1 − 2ρ2)
,

with ρ2 = 2−
α

2+ε ≥ ρk for all k ≥ 2, we obtain J (yk) → −∞ as k → +∞.
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